Compositional data arise in many real-life applications and versatile methods for properly analyzing this type of data in the regression context are needed. This paper, through use of the $\alpha$-transformation, extends the classical $k$-$NN$ regression to what is termed $\alpha$-$k$-$NN$ regression, yielding a highly flexible non-parametric regression model for compositional data. The $\alpha$-$k$-$NN$ is further extended to the $\alpha$-kernel regression by adopting the Nadaray-Watson estimator. Unlike many of the recommended regression models for compositional data, zeros values (which commonly occur in practice) are not problematic and they can be incorporated into the proposed models without modification. Extensive simulation studies and real-life data analyses highlight the advantage of using these non-parametric regressions for complex relationships between the compositional response data and Euclidean predictor variables. Both suggest that $\alpha$-$k$-$NN$ and $\alpha$-kernel regressions can lead to more accurate predictions compared to current regression models which assume a, sometimes restrictive, parametric relationship with the predictor variables. In addition, the $\alpha$-$k$-$NN$ regression, in contrast to $\alpha$-kernel regression, enjoys a high computational efficiency rendering it highly attractive for use with large scale, massive, or big data.


翻译:许多实际生活中应用的构成数据和在回归背景下正确分析这类数据所需的多种方法都产生了构成数据。本文件需要通过使用美元-美元转换法,将经典美元-美元(non$)回归扩展至所谓的美元-美元-美元-美元-美元(Non$)回归,从而产生一个非常灵活的非参数回归模型,用于构建数据。美元-美元-美元-美元-新元,通过采用纳达雷-瓦特森估测器,进一步扩展至美元-内核回归。与许多推荐的构成数据回归模型不同,零值(通常在实践中发生)并不成问题,可以不加修改地被纳入拟议的模型。广泛的模拟研究和真实数据分析突出表明了使用这些非参数回归模型对构成数据与欧元预测变量之间的复杂关系的好处。 这两种方法都表明,采用纳达雷-瓦特森估测仪(alpha)美元-美元-美元(NNNON$)和1美元/美元(al-cernal)回归值回归值($)的回归模型可以导致更精确的预测,有时采用高精确的回归模型,并假设与当前弹性的回归模型。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
【图与几何深度学习】Graph and geometric deep learning,49页ppt
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
65+阅读 · 2021年2月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
51+阅读 · 2020年8月25日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
35+阅读 · 2020年5月4日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年7月1日
Arxiv
0+阅读 · 2021年6月30日
Arxiv
3+阅读 · 2018年6月18日
VIP会员
相关VIP内容
【图与几何深度学习】Graph and geometric deep learning,49页ppt
如何构建你的推荐系统?这份21页ppt教程为你讲解
专知会员服务
65+阅读 · 2021年2月12日
【干货书】机器学习速查手册,135页pdf
专知会员服务
126+阅读 · 2020年11月20日
【CIKM2020】神经逻辑推理,Neural Logic Reasoning
专知会员服务
51+阅读 · 2020年8月25日
【IJCAI2020】TransOMCS: 从语言图谱到常识图谱
专知会员服务
35+阅读 · 2020年5月4日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
已删除
将门创投
3+阅读 · 2018年3月13日
【学习】(Python)SVM数据分类
机器学习研究会
6+阅读 · 2017年10月15日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员