Compositional data arise in many real-life applications and versatile methods for properly analyzing this type of data in the regression context are needed. This paper, through use of the $\alpha$-transformation, extends the classical $k$-$NN$ regression to what is termed $\alpha$-$k$-$NN$ regression, yielding a highly flexible non-parametric regression model for compositional data. The $\alpha$-$k$-$NN$ is further extended to the $\alpha$-kernel regression by adopting the Nadaray-Watson estimator. Unlike many of the recommended regression models for compositional data, zeros values (which commonly occur in practice) are not problematic and they can be incorporated into the proposed models without modification. Extensive simulation studies and real-life data analyses highlight the advantage of using these non-parametric regressions for complex relationships between the compositional response data and Euclidean predictor variables. Both suggest that $\alpha$-$k$-$NN$ and $\alpha$-kernel regressions can lead to more accurate predictions compared to current regression models which assume a, sometimes restrictive, parametric relationship with the predictor variables. In addition, the $\alpha$-$k$-$NN$ regression, in contrast to $\alpha$-kernel regression, enjoys a high computational efficiency rendering it highly attractive for use with large scale, massive, or big data.
翻译:许多实际生活中应用的构成数据和在回归背景下正确分析这类数据所需的多种方法都产生了构成数据。本文件需要通过使用美元-美元转换法,将经典美元-美元(non$)回归扩展至所谓的美元-美元-美元-美元-美元(Non$)回归,从而产生一个非常灵活的非参数回归模型,用于构建数据。美元-美元-美元-美元-新元,通过采用纳达雷-瓦特森估测器,进一步扩展至美元-内核回归。与许多推荐的构成数据回归模型不同,零值(通常在实践中发生)并不成问题,可以不加修改地被纳入拟议的模型。广泛的模拟研究和真实数据分析突出表明了使用这些非参数回归模型对构成数据与欧元预测变量之间的复杂关系的好处。 这两种方法都表明,采用纳达雷-瓦特森估测仪(alpha)美元-美元-美元(NNNON$)和1美元/美元(al-cernal)回归值回归值($)的回归模型可以导致更精确的预测,有时采用高精确的回归模型,并假设与当前弹性的回归模型。