We study the complexity of proof systems augmenting resolution with inference rules that allow, given a formula $\Gamma$ in conjunctive normal form, deriving clauses that are not necessarily logically implied by $\Gamma$ but whose addition to $\Gamma$ preserves satisfiability. When the derived clauses are allowed to introduce variables not occurring in $\Gamma$, the systems we consider become equivalent to extended resolution. We are concerned with the versions of these systems without new variables. They are called BC${}^-$, RAT${}^-$, SBC${}^-$, and GER${}^-$, denoting respectively blocked clauses, resolution asymmetric tautologies, set-blocked clauses, and generalized extended resolution. Each of these systems formalizes some restricted version of the ability to make assumptions that hold "without loss of generality," which is commonly used informally to simplify or shorten proofs. Except for SBC${}^-$, these systems are known to be exponentially weaker than extended resolution. They are, however, all equivalent to it under a relaxed notion of simulation that allows the translation of the formula along with the proof when moving between proof systems. By taking advantage of this fact, we construct formulas that separate RAT${}^-$ from GER${}^-$ and vice versa. With the same strategy, we also separate SBC${}^-$ from RAT${}^-$. Additionally, we give polynomial-size SBC${}^-$ proofs of the pigeonhole principle, which separates SBC${}^-$ from GER${}^-$ by a previously known lower bound. These results also separate the three systems from BC${}^-$ since they all simulate it. We thus give an almost complete picture of their relative strengths.
翻译:我们研究了证明系统的复杂性,其中增加了推理规则,允许在命题合取范式中给出一个公式 $\Gamma$ ,导出不一定是由 $\Gamma$ 逻辑蕴含的子句,但是将其添加到 $\Gamma$ 保持可满足性。当允许导出的子句引入在 $\Gamma$ 中不存在的变量时,我们考虑了扩展的分辨率。我们关注没有新变量的这些系统版本。它们分别称为 BC${}^-$,RAT${}^-$,SBC${}^-$ 和 GER${}^-$,分别表示阻止子句,分辨率不对称性,集合阻塞子句和广义扩展的分辨率。这些系统各自形式化了一些有关于“不失一般性”的假设的能力的限制版本,常规使用这些版本来简化或缩短证明。除了 SBC${}^-$ 之外,已知这些系统都比扩展分辨率要弱指数倍。但是,在放松了仿真的概念后(也就是允许在证明系统之间移动时将公式与证明一起翻译),它们都可以等价于扩展分辨率。我们利用这一事实构造了可使 RAT${}^-$/GER${}^-$ 和 GER${}^-$/RAT${}^-$ 分离的公式。同样地,我们还用相同的策略,分离 SBC${}^-$ 与 RAT${}^-$/GER${}^-$。此外,我们还给出了由多项式规模的 SBC${}^-$ 证明鸽笼原理,该原理将其与 GER${}^-$ 分离,而该分离已有先前的下限。这些结果也将这三个系统与 BC${}^-$ 分开,因为它们都可以模拟它。因此我们对它们的相对强度给出了一个几乎完整的描述。