We introduce the notion of a \emph{complex cell}, a complexification of the cells/cylinders used in real tame geometry. Complex cells are equipped with a natural notion of holomorphic extension, and the hyperbolic geometry of a cell within its extension provides the class of complex cells with a rich geometric function theory absent in the real case. We use this to prove a complex analog of the cellular decomposition theorem of real tame geometry. In the algebraic case we show that the complexity of such decompositions depends polynomially on the degrees of the equations involved. Using this theory, we sharpen the Yomdin-Gromov algebraic lemma on $C^r$-smooth parametrizations of semialgebraic sets: we show that the number of $C^r$ charts can be taken to be polynomial in the smoothness order $r$ and in the complexity of the set. The algebraic lemma was initially invented in the work of Yomdin and Gromov to produce estimates for the topological entropy of $C^\infty$ maps. Combined with work of Burguet, Liao and Yang, our refined version establishes an optimal sharpening of these estimates for \emph{analytic} maps, in the form of tight bounds on the tail entropy and volume growth. This settles a conjecture of Yomdin who proved the same result in dimension two in 1991. A self-contained proof of these estimates using the refined algebraic lemma is given in an appendix by Yomdin. The algebraic lemma has more recently been used in the study of rational points on algebraic and transcendental varieties. We use the theory of complex cells in these two directions. In the algebraic context we prove a sharpening of a result of Heath-Brown on interpolating rational points in algebraic varieties. In the transcendental context we prove an interpolation result for (unrestricted) logarithmic images of subanalytic sets.


翻译:我们引入了 \ emph{ complex cell} 的概念, 这是一种在真实 tame 几何学中使用的细胞/ 细胞的复杂化概念。 复杂的细胞配备了一个自然的全色扩展概念, 并且其扩展内的细胞的双偏几何测量为复杂细胞提供了在真实情况中不存在的丰富的半数函数理论。 我们用它来证明细胞分解理论的复杂类比。 在测深中, 我们显示这种分解的复杂程度取决于所涉方程的多位。 使用这个理论, 我们用一个更自然的全色扩展扩展概念, 并且用一个更深色的平面图像来提供一个精度函数。 我们用 $rc 平面平面图中的精度变色值结果, 用这个精度变金色的精度变金色变金色变金色变金色变金色图中的蛋白质变现。 在亚氏 质变金色变金色变金色图中, 以亚色变色变金色变金色变金色的变金色变结果 。

0
下载
关闭预览

相关内容

2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
91+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
100+阅读 · 2019年10月9日
知识图谱本体结构构建论文合集
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
19+阅读 · 2018年10月25日
Structure Aware SLAM using Quadrics and Planes
Arxiv
4+阅读 · 2018年8月13日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
14+阅读 · 2017年11月16日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员