A reliable and efficient representation of multivariate time series is crucial in various downstream machine learning tasks. In multivariate time series forecasting, each variable depends on its historical values and there are inter-dependencies among variables as well. Models have to be designed to capture both intra- and inter-relationships among the time series. To move towards this goal, we propose the Time Series Attention Transformer (TSAT) for multivariate time series representation learning. Using TSAT, we represent both temporal information and inter-dependencies of multivariate time series in terms of edge-enhanced dynamic graphs. The intra-series correlations are represented by nodes in a dynamic graph; a self-attention mechanism is modified to capture the inter-series correlations by using the super-empirical mode decomposition (SMD) module. We applied the embedded dynamic graphs to times series forecasting problems, including two real-world datasets and two benchmark datasets. Extensive experiments show that TSAT clearly outerperforms six state-of-the-art baseline methods in various forecasting horizons. We further visualize the embedded dynamic graphs to illustrate the graph representation power of TSAT. We share our code at https://github.com/RadiantResearch/TSAT.


翻译:在各种下游机器学习任务中,可靠和高效的多变时间序列表示对于多个下游机器学习任务至关重要。在多变时间序列预测中,每个变量都取决于其历史价值,变量之间也存在相互依存关系。模型的设计必须同时涵盖时间序列之间的内部和相互关系。为了实现这一目标,我们提议采用时间序列关注变换器(TSAT),用于多变时间序列教学。使用TSAT,我们既代表时间信息,也代表多种变换时间序列的相互依存关系,以边缘增强的动态图表为对象。在动态图表中,序列内部的相互关系以节点为代表;必须修改自我注意机制,以便通过使用超光速模式解析模块(SMD)来捕捉不同序列的相互关系。我们用嵌入的动态图表来应对时间序列预测问题,包括两个真实世界数据集和两个基准数据集。广泛的实验显示,TSAT在各种预测地平线上,我们用节点表示出六个状态的基线方法;我们进一步将MARSAT/ROGSD 的动态图解用于各种预测地平面图。我们共享的图像图式图。我们分享了在TRASAT/ROGSDSDSD的图。

2
下载
关闭预览

相关内容

【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
33+阅读 · 2022年2月15日
Arxiv
20+阅读 · 2021年2月28日
Heterogeneous Graph Transformer
Arxiv
27+阅读 · 2020年3月3日
Arxiv
15+阅读 · 2020年2月5日
Arxiv
19+阅读 · 2018年3月28日
VIP会员
相关VIP内容
【硬核书】树与网络上的概率,716页pdf
专知会员服务
72+阅读 · 2021年12月8日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
KDD2021 | 最新GNN官方教程
机器学习与推荐算法
2+阅读 · 2021年8月18日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员