A reliable and efficient representation of multivariate time series is crucial in various downstream machine learning tasks. In multivariate time series forecasting, each variable depends on its historical values and there are inter-dependencies among variables as well. Models have to be designed to capture both intra- and inter-relationships among the time series. To move towards this goal, we propose the Time Series Attention Transformer (TSAT) for multivariate time series representation learning. Using TSAT, we represent both temporal information and inter-dependencies of multivariate time series in terms of edge-enhanced dynamic graphs. The intra-series correlations are represented by nodes in a dynamic graph; a self-attention mechanism is modified to capture the inter-series correlations by using the super-empirical mode decomposition (SMD) module. We applied the embedded dynamic graphs to times series forecasting problems, including two real-world datasets and two benchmark datasets. Extensive experiments show that TSAT clearly outerperforms six state-of-the-art baseline methods in various forecasting horizons. We further visualize the embedded dynamic graphs to illustrate the graph representation power of TSAT. We share our code at https://github.com/RadiantResearch/TSAT.
翻译:在各种下游机器学习任务中,可靠和高效的多变时间序列表示对于多个下游机器学习任务至关重要。在多变时间序列预测中,每个变量都取决于其历史价值,变量之间也存在相互依存关系。模型的设计必须同时涵盖时间序列之间的内部和相互关系。为了实现这一目标,我们提议采用时间序列关注变换器(TSAT),用于多变时间序列教学。使用TSAT,我们既代表时间信息,也代表多种变换时间序列的相互依存关系,以边缘增强的动态图表为对象。在动态图表中,序列内部的相互关系以节点为代表;必须修改自我注意机制,以便通过使用超光速模式解析模块(SMD)来捕捉不同序列的相互关系。我们用嵌入的动态图表来应对时间序列预测问题,包括两个真实世界数据集和两个基准数据集。广泛的实验显示,TSAT在各种预测地平线上,我们用节点表示出六个状态的基线方法;我们进一步将MARSAT/ROGSD 的动态图解用于各种预测地平面图。我们共享的图像图式图。我们分享了在TRASAT/ROGSDSDSD的图。