We consider the task of approximating the ground state energy of two-local quantum Hamiltonians on bounded-degree graphs. Most existing algorithms optimize the energy over the set of product states. Here we describe a family of shallow quantum circuits that can be used to improve the approximation ratio achieved by a given product state. The algorithm takes as input an $n$-qubit product state $|v\rangle$ with mean energy $e_0=\langle v|H|v\rangle$ and variance $\mathrm{Var}=\langle v|(H-e_0)^2|v\rangle$, and outputs a state with an energy that is lower than $e_0$ by an amount proportional to $\mathrm{Var}^2/n$. In a typical case, we have $\mathrm{Var}=\Omega(n)$ and the energy improvement is proportional to the number of edges in the graph. When applied to an initial random product state, we recover and generalize the performance guarantees of known algorithms for bounded-occurrence classical constraint satisfaction problems. We extend our results to $k$-local Hamiltonians and entangled initial states.
翻译:我们考虑在约束度图形上将两个本地汉密尔顿量的汉密尔顿人的地面状态能量进行接近。 大多数现有的算法优化了产品状态的能量。 我们在这里描述一组浅量电路, 可以用来改善某个产品状态所达到的近似比率。 算法以平均能量$_ 0 ⁇ langle v ⁇ v\ ⁇ v\rangle$和差异$\mathrm{Var ⁇ langle} 和 $\mathrm{Var ⁇ langle v} (H- e_ 0_ 0)%2 ⁇ v\rangle$ 和输出能量低于$_0$的能量。 在典型情况下, 算法以平均能量为单位, 我们拥有$ mathrm{Var{Omega(n)$, 能源的改善与图表中的边缘数成正比。 当应用初始随机产品状态时, 我们回收并概括已知对约束度- 消费美元初始约束性约束性约束性约束性要求的计算结果。