We present a self-stabilising phase clock for population protocols. In the population model we are given a system of $n$ identical agents which interact in a sequence of randomly chosen pairs. Our phase clock is leaderless and it requires $O(\log n)$ states. It runs forever and is, at any point of time, in a synchronous state w.h.p. When started in an arbitrary configuration, it recovers rapidly and enters a synchronous configuration within $O(\log n)$ parallel time w.h.p. Once the clock is synchronized, it stays in a synchronous configuration for at least poly $n$ parallel time w.h.p. We use our clock to design a loosely self-stabilizing protocol that solves the comparison problem introduced by Alistarh et al., 2021. In this problem, a subset of agents has at any time either $A$ or $B$ as input. The goal is to keep track which of the two opinions is (momentarily) the majority. We show that if the initial majority has a support of at least $\Omega(\log n)$ agents and a sufficiently large bias is present, then the protocol converges to a correct output within $O(\log n)$ time and stays in a correct configuration for poly $n$ time, w.h.p.
翻译:我们为人口协议提供了一个自稳定阶段的时钟。 在人口模型中, 我们得到的是一美元一模一样的代理器, 以随机选择的一对对的序列进行互动。 我们的时钟没有领导力, 它需要$O(\log n) 。 它会永远运行, 并且随时同步, 在一个任意的配置中启动时, 它会迅速恢复, 并进入一个同步配置 $O( log n) 的同步时间 。 一旦时钟同步, 它会保持一个同步配置, 至少在 聚一美元平行时间 。 我们用时钟设计一个松散的自稳定协议, 解决 Alistarah 等人( 2021 ) 引入的比较问题。 在这个问题中, 一组代理器在任何时间里都有 $( log n) 或 $( $B) 的投入。 目标是追踪两种意见中的哪个( momental n.h) 。 我们显示, 如果初始多数支持至少 $\\ omgrog\ rog\ a creal pral pressal pressal pressal pressal 和 prettice prettice prettice $( press) $ (n) rolick) 。