Deep neural networks (DNNs) have shown exciting performance in various tasks, yet suffer generalization failures when meeting unknown target domains. One of the most promising approaches to achieve domain generalization (DG) is generating unseen data, e.g., mixup, to cover the unknown target data. However, existing works overlook the challenges induced by the simultaneous appearance of changes in both the semantic and distribution space. Accordingly, such a challenge makes source distributions hard to fit for DNNs. To mitigate the hard-fitting issue, we propose to perform a semantic-aware mixup (SAM) for domain generalization, where whether to perform mixup depends on the semantic and domain information. The feasibility of SAM shares the same spirits with the Fourier-based mixup. Namely, the Fourier phase spectrum is expected to contain semantics information (relating to labels), while the Fourier amplitude retains other information (relating to style information). Built upon the insight, SAM applies different mixup strategies to the Fourier phase spectrum and amplitude information. For instance, SAM merely performs mixup on the amplitude spectrum when both the semantic and domain information changes. Consequently, the overwhelmingly large change can be avoided. We validate the effectiveness of SAM using image classification tasks on several DG benchmarks.


翻译:深度神经网络(DNN)在各种任务中表现出了很好的性能,但是当面对未知的目标领域时会出现普遍的泛化失败。其中最有希望实现领域通用化(DG)的方法之一是生成看不见的数据,例如Mixup,以覆盖未知的目标数据。然而,现有的工作忽略了同时出现语义和分布空间变化所带来的挑战。因此,这样的挑战使源分布难以适应DNN。为了缓解硬拟合的问题,我们提出了一种用于领域通用化的语义感知Mixup(SAM),其中是否执行Mixup取决于语义和领域信息。SAM的可行性与基于傅里叶的Mixup具有相同的精神。即,傅里叶相位谱预计包含语义信息(与标签相关),而傅里叶幅度则保留其他信息(与风格信息相关)。基于此,SAM对傅里叶相位谱和幅度信息应用不同的Mixup策略。例如,当语义和领域信息都改变时,SAM仅在幅度谱上执行Mixup。因此,可以避免极大的变化。我们使用图像分类任务在几个DG基准上验证了SAM的有效性。

0
下载
关闭预览

相关内容

ChatAug: 利用ChatGPT进行文本数据增强
专知会员服务
80+阅读 · 2023年3月4日
【伯克利博士论文】学习在动态环境中泛化,103页pdf
专知会员服务
71+阅读 · 2022年10月12日
【AAAI 2022】基于数据分布生成的可预测概念漂移适应
专知会员服务
33+阅读 · 2022年1月12日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关资讯
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
自然语言处理顶会EMNLP2018接受论文列表!
专知
87+阅读 · 2018年8月26日
迁移学习之Domain Adaptation
全球人工智能
18+阅读 · 2018年4月11日
相关基金
国家自然科学基金
5+阅读 · 2015年12月31日
国家自然科学基金
4+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
4+阅读 · 2014年12月31日
国家自然科学基金
5+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员