Gigapixel medical images provide massive data, both morphological textures and spatial information, to be mined. Due to the large data scale in histology, deep learning methods play an increasingly significant role as feature extractors. Existing solutions heavily rely on convolutional neural networks (CNNs) for global pixel-level analysis, leaving the underlying local geometric structure such as the interaction between cells in the tumor microenvironment unexplored. The topological structure in medical images, as proven to be closely related to tumor evolution, can be well characterized by graphs. To obtain a more comprehensive representation for downstream oncology tasks, we propose a fusion framework for enhancing the global image-level representation captured by CNNs with the geometry of cell-level spatial information learned by graph neural networks (GNN). The fusion layer optimizes an integration between collaborative features of global images and cell graphs. Two fusion strategies have been developed: one with MLP which is simple but turns out efficient through fine-tuning, and the other with Transformer gains a champion in fusing multiple networks. We evaluate our fusion strategies on histology datasets curated from large patient cohorts of colorectal and gastric cancers for three biomarker prediction tasks. Both two models outperform plain CNNs or GNNs, reaching a consistent AUC improvement of more than 5% on various network backbones. The experimental results yield the necessity for combining image-level morphological features with cell spatial relations in medical image analysis. Codes are available at https://github.com/yiqings/HEGnnEnhanceCnn.
翻译:Giapixel 医疗图像提供了大量数据,包括形态质地和空间信息,有待挖掘。由于组织学中的数据规模巨大,深层次学习方法作为特征提取器的作用越来越重要。现有的解决方案严重依赖合成神经网络(CNNs)来进行全球象素级分析,从而使得全球象素级的细胞相互作用等基本的当地几何结构得以保持最佳化,如肿瘤微观环境中细胞之间的相互作用。医学图像中的表层结构,经证明与肿瘤进化密切相关,可以用图表来很好地描述。为了更全面地反映下游肿瘤任务,我们提议了一个由CNNS所收集的全球图像级代表性框架,通过图形神经网络(GNN)所学习的细胞级空间信息的几何测量。聚合层优化了全球图象和细胞图中细胞结构之间的协作性特征的整合。已经开发了两个融合战略:一个与MLPP的表比较简单,但通过微调产生效率,另一个是变异体在使用多个网络方面获得冠军。我们将GNISIMS图像网络中的G-G值图像分析战略结合到其GNS-GG的硬值数据模型,两个SBsalimal sal sal sal sal sal sal sal sal salmamamamal sal sal sal sald fal sal sal sal sal sal sal sal sal sal sal sal sal sal sal lad s fal sal sald fald fald sald sal sald sal sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sald sal sal sald sald sald sald sald sal sald sald sald sald sald sald sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sal sald sals sals sald sald sald sald sald sal sal sald sal sal