Consider a planner who has to decide whether or not to introduce a new policy to a certain local population. The planner has only limited knowledge of the policy's causal impact on this population due to a lack of data but does have access to the publicized results of intervention studies performed for similar policies on different populations. How should the planner make use of and aggregate this existing evidence to make her policy decision? Building upon the paradigm of `patient-centered meta-analysis' proposed by Manski (2020; Towards Credible Patient-Centered Meta-Analysis, Epidemiology), we formulate the planner's problem as a statistical decision problem with a social welfare objective pertaining to the local population, and solve for an optimal aggregation rule under the minimax-regret criterion. We investigate the analytical properties, computational feasibility, and welfare regret performance of this rule. We also compare the minimax regret decision rule with plug-in decision rules based upon a hierarchical Bayes meta-regression or stylized mean-squared-error optimal prediction. We apply the minimax regret decision rule to two settings: whether to enact an active labor market policy given evidence from 14 randomized control trial studies; and whether to approve a drug (Remdesivir) for COVID-19 treatment using a meta-database of clinical trials.


翻译:计划者应该如何利用和汇总这一现有证据来作出政策决定? 以曼斯基提出的“以病人为中心的元分析”的范式为基础(2020年); 争取治愈病人-中枢元分析,流行病学),我们将规划者的问题作为统计决策问题,与与当地人口社会福利目标相联系,但我们将该计划者的问题作为统计决策问题,解决与当地人口有关的社会福利目标,但能够获取针对不同人口对类似政策进行的干预研究的公开结果。 我们应如何利用和汇总这一现有证据,以作出其政策决定? 以曼斯基提出的“以病人为中心的元分析”的范式为基础(2020年; 争取治愈病人-中枢元分析,流行病学),我们把计划者的问题作为统计决策问题,作为与当地人口社会福利目标相联系,并解决了根据微麦克斯-19临床标准对最佳合并规则的解决方案。 我们应如何调查这一规则的分析性质、计算可行性以及福利方面的遗憾表现? 我们还将小麦克斯遗憾规则与基于等级的Bayes 元倒退或中位的中位中位中位中位最佳预测的“最佳预测”规则进行比较。 我们将小麦遗憾决定决定适用于决定规则应用于两种环境: 是否通过随机检验检验,是否实行一种动态检验。

0
下载
关闭预览

相关内容

专知会员服务
52+阅读 · 2020年9月7日
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
105+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
Yoshua Bengio,使算法知道“为什么”
专知会员服务
7+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年10月12日
Arxiv
15+阅读 · 2021年2月19日
Arxiv
27+阅读 · 2020年6月19日
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
【推荐】视频目标分割基础
机器学习研究会
9+阅读 · 2017年9月19日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员