Non-randomized treatment effect models are widely used for the assessment of treatment effects in various fields and in particular social science disciplines like political science, psychometry, psychology. More specifically, these are situations where treatment is assigned to an individual based on some of their characteristics (e.g. scholarship is allocated based on merit or antihypertensive treatments are allocated based on blood pressure level) instead of being allocated randomly, as is the case, for example, in randomized clinical trials. Popular methods that have been largely employed till date for estimation of such treatment effects suffer from slow rates of convergence (i.e. slower than $\sqrt{n}$). In this paper, we present a new model coined SCENTS: Score Explained Non-Randomized Treatment Systems, and a corresponding method that allows estimation of the treatment effect at $\sqrt{n}$ rate in the presence of fairly general forms of confoundedness, when the `score' variable on whose basis treatment is assigned can be explained via certain feature measurements of the individuals under study. We show that our estimator is asymptotically normal in general and semi-parametrically efficient under normal errors. We analyze two real datasets via our method and compare our results with those obtained by using previous approaches. We conclude this paper with a discussion on some possible extensions of our approach.


翻译:在评估各个领域,特别是政治科学、心理学、心理学等社会科学学科的治疗效果时,广泛使用非随机治疗效应模型,评估各个领域,特别是政治学、心理学、心理学等社会科学学科的治疗效果,更具体地说,这些情况是,根据个人的某些特点(例如,奖学金是根据功绩分配的,或根据血压水平分配的抗血压治疗),对个人进行治疗的新模式(例如,奖学金是根据功绩分配的,或根据血压水平分配的抗血压治疗),而不是随机分配,例如,随机临床试验就是这种情况。 迄今主要用于估计这种治疗效果的流行方法,由于对受研究的个人进行某些特征测量(即慢于$/sqrt{n}美元),因而受到缓慢的趋同影响。 在本文中,我们展示了一种新的模式:分解非随机治疗系统,以及一种相应的方法,在相当普遍的形式的基础上,可以估计治疗效果为$/sqr{n},而基于这种处理方法的“核心”变量,可以通过对受研究的个人进行某些特征测量的测量结果加以解释。 我们的估测测测算,根据我们以往的正常的一般和半结果,我们用这种正常的平时,我们通常的分解法分析结果,我们用这种方法对正常的分解法分析结果进行。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Arxiv
0+阅读 · 2021年10月4日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
已删除
将门创投
4+阅读 · 2018年11月20日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Top
微信扫码咨询专知VIP会员