Sophisticated machine learning (ML) models to inform trading in the financial sector create problems of interpretability and risk management. Seemingly robust forecasting models may behave erroneously in out of distribution settings. In 2020, some of the world's most sophisticated quant hedge funds suffered losses as their ML models were first underhedged, and then overcompensated. We implement a gradient-based approach for precisely stress-testing how a trading model's forecasts can be manipulated, and their effects on downstream tasks at the trading execution level. We construct inputs -- whether in changes to sentiment or market variables -- that efficiently affect changes in the return distribution. In an industry-standard trading pipeline, we perturb model inputs for eight S&P 500 stocks. We find our approach discovers seemingly in-sample input settings that result in large negative shifts in return distributions. We provide the financial community with mechanisms to interpret ML forecasts in trading systems. For the security community, we provide a compelling application where studying ML robustness necessitates that one capture an end-to-end system's performance rather than study a ML model in isolation. Indeed, we show in our evaluation that errors in the forecasting model's predictions alone are not sufficient for trading decisions made based on these forecasts to yield a negative return.


翻译:向金融部门贸易提供信息的精密机器学习模式(ML)在金融行业贸易中造成了解释性和风险管理问题。看起来强有力的预测模式可能在分销环境之外出现错误行为。2020年,世界一些最尖端的对冲基金由于ML模式最初被冲淡,然后过度补偿而蒙受了损失。我们采用了基于梯度的方法,精确地测试如何操纵贸易模式的预测,及其对贸易执行阶段下游任务的影响。我们建构了有效影响回报分配变化的投入 -- -- 无论是情绪变化还是市场变量 -- -- 。在行业标准贸易管道中,我们渗透了8个S & P 500股票的模型投入。我们发现我们的方法发现,似乎在模拟投入环境中发现,导致回报分配的大幅负转移。我们为金融界提供了解释贸易体系中ML预测的机制。对于安全界,我们提供了令人信服的应用方法,即研究ML稳健性要求人们能够捕捉到最终到系统的业绩,而不是单独研究ML模型。我们的方法发现,在孤立的工业标准交易模型中,我们发现这些预测中的反向收益预测是充分的。

0
下载
关闭预览

相关内容

ACM/IEEE第23届模型驱动工程语言和系统国际会议,是模型驱动软件和系统工程的首要会议系列,由ACM-SIGSOFT和IEEE-TCSE支持组织。自1998年以来,模型涵盖了建模的各个方面,从语言和方法到工具和应用程序。模特的参加者来自不同的背景,包括研究人员、学者、工程师和工业专业人士。MODELS 2019是一个论坛,参与者可以围绕建模和模型驱动的软件和系统交流前沿研究成果和创新实践经验。今年的版本将为建模社区提供进一步推进建模基础的机会,并在网络物理系统、嵌入式系统、社会技术系统、云计算、大数据、机器学习、安全、开源等新兴领域提出建模的创新应用以及可持续性。 官网链接:http://www.modelsconference.org/
专知会员服务
94+阅读 · 2021年8月28日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
已删除
将门创投
11+阅读 · 2019年7月4日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2021年10月12日
Arxiv
14+阅读 · 2020年12月17日
Interpretable Active Learning
Arxiv
3+阅读 · 2018年6月24日
Arxiv
3+阅读 · 2017年12月23日
VIP会员
相关资讯
已删除
将门创投
11+阅读 · 2019年7月4日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Disentangled的假设的探讨
CreateAMind
9+阅读 · 2018年12月10日
人工智能 | 国际会议截稿信息9条
Call4Papers
4+阅读 · 2018年3月13日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员