We study two fundamental problems of distributed computing, consensus and approximate agreement, through a novel approach for proving lower bounds and impossibility results, that we call the asynchronous speedup theorem. For a given $n$-process task $\Pi$ and a given computational model $M$, we define a new task, called the closure of $\Pi$ with respect to $M$. The asynchronous speedup theorem states that if a task $\Pi$ is solvable in $t\geq 1$ rounds in $M$, then its closure w.r.t. $M$ is solvable in $t-1$ rounds in $M$. We prove this theorem for iterated models, as long as the model allows solo executions. We illustrate the power of our asynchronous speedup theorem by providing a new proof of the wait-free impossibility of consensus using read/write registers, and a new proof of the wait-free impossibility of solving consensus using registers and test&set objects for $n>2$. The proof is merely by showing that, in each case, the closure of consensus (w.r.t. the corresponding model) is consensus itself. Our main application is the study of the power of additional objects, namely test&set and binary consensus, for wait-free solving approximate agreement faster. By analyzing the closure of approximate agreement w.r.t. each of the two models, we show that while these objects are more powerful than read/write registers from the computability perspective, they are not more powerful as far as helping solving approximate agreement faster is concerned.


翻译:我们研究的是分配计算、共识和大致协议这两个根本问题,即:我们通过新颖的方法来证明低限值和不可能的结果,研究的是分配计算、共识和约合这两个根本问题,即我们用新颖的方法来证明低限值和不可能的结果,我们称之为非同步速率。对于一个给定的美元进程任务,美元和给定的计算模型,我们定义了一个新的任务,即关闭$Pi美元相对于$美元。我们用一种新颖的方法研究的是,如果一个任务在美元1美元回合中可以溶解,用美元来证明低限值和不可能产生结果,那么,那么它的关闭值是非同步的,然后用美元1美元回合来标定,用美元来标定的超同步速度。只要模型允许单独处决,我们就能证明这个超速模型的标定点数。我们最接近的固性协议,也就是以更快的速度来证明我们最接近的固态的固态,而我们最接近的固态的固态的固态,也就是我们最接近的固态的固态的固态,即证明我们最接近的固态的固态的固态的固度,也就是的固态的固态的固度,也就是的固态的固态的固态的固态,也就是于于于于我们的固态的固态的固态的固态,也就是的固态的固态的固态,也就是于于于于于于于正的固态的固态的固态。

0
下载
关闭预览

相关内容

Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年7月29日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
2+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员