In this paper, we present our participation to CLEF MC2 2018 edition for the task 2 Mining opinion argumentation. It consists in detecting the most argumentative and diverse Tweets about some festivals in English and French from a massive multilingual collection. We measure argumentativity of a Tweet computing the amount of argumentation compounds it contains. We consider argumentation compounds as a combination between opinion expression and its support with facts and a particular structuration. Regarding diversity, we consider the amount of festival aspects covered by Tweets. An initial step filters the original dataset to fit the language and topic requirements of the task. Then, we compute and integrate linguistic descriptors to detect claims and their respective justifications in Tweets. The final step extracts the most diverse arguments by clustering Tweets according to their textual content and selecting the most argumentative ones from each cluster. We conclude the paper describing the different ways we combined the descriptors among the different runs we submitted and discussing their results.


翻译:在本文中,我们介绍了我们参加了CLEF MC2 2018任务2“挖掘观点争论”中的参赛作品,旨在从大型多语言收集中检测关于一些节日的最具争议和多样化的英语和法语推文。我们通过计算推文中包含的争论化化合物的数量来衡量推文的争论性。我们认为,争论化化合物是观点表达和其根据事实的支持之间的组合,并具有特定的结构。关于多样性,我们考虑由推文涵盖的节日方面数量。初始步骤过滤原始数据集以适应任务的语言和主题要求。然后,我们计算并集成语言描述符以检测推文中的主张及其相应的理由。最后一步按照其文本内容将推文聚类,从每个聚类中选择最具争议性的推文。我们最后总结了我们在提交的不同运行中如何组合描述符以及讨论它们的结果。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Chatting Makes Perfect -- Chat-based Image Retrieval
Arxiv
0+阅读 · 2023年5月31日
Arxiv
16+阅读 · 2021年11月27日
Arxiv
11+阅读 · 2018年1月11日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
【KDD2020教程】多模态网络表示学习
专知会员服务
129+阅读 · 2020年8月26日
专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
相关资讯
GNN 新基准!Long Range Graph Benchmark
图与推荐
0+阅读 · 2022年10月18日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
大神 一年100篇论文
CreateAMind
15+阅读 · 2018年12月31日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
笔记 | Sentiment Analysis
黑龙江大学自然语言处理实验室
10+阅读 · 2018年5月6日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员