Unsupervised domain adaptation for person re-identification (Person Re-ID) is the task of transferring the learned knowledge on the labeled source domain to the unlabeled target domain. Most of the recent papers that address this problem adopt an offline training setting. More precisely, the training of the Re-ID model is done assuming that we have access to the complete training target domain data set. In this paper, we argue that the target domain generally consists of a stream of data in a practical real-world application, where data is continuously increasing from the different network's cameras. The Re-ID solutions are also constrained by confidentiality regulations stating that the collected data can be stored for only a limited period, hence the model can no longer get access to previously seen target images. Therefore, we present a new yet practical online setting for Unsupervised Domain Adaptation for person Re-ID with two main constraints: Online Adaptation and Privacy Protection. We then adapt and evaluate the state-of-the-art UDA algorithms on this new online setting using the well-known Market-1501, Duke, and MSMT17 benchmarks.


翻译:个人再识别(Person Re-ID)不受监督的域适应是将标签源域的已学知识转让给未贴标签的目标域的任务。最近处理该问题的文件大多采用离线培训设置。更准确地说,再识别模型的培训已经完成,假设我们能够获得完整的培训目标域数据集。在本文中,我们争辩说,目标域一般包括实际实际应用中的数据流,数据从不同网络的相机中不断增长。再识别解决方案还受到保密条例的限制,该条例规定所收集的数据只能储存一段时间,因此该模型无法再访问先前看到的目标图像。因此,我们提出了一个新的、但实用的在线设置,用于不受监督的人再识别域适应,其两个主要制约因素是:在线适应和隐私保护。然后我们利用众所周知的市场1501、杜克和MSMT17基准,对这一新在线设置中的最新的UDA算法进行修改和评估。

0
下载
关闭预览

相关内容

专知会员服务
31+阅读 · 2021年6月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Transfer Adaptation Learning: A Decade Survey
Arxiv
37+阅读 · 2019年3月12日
VIP会员
相关VIP内容
专知会员服务
31+阅读 · 2021年6月12日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
6+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员