项目名称: 复合材料夹层结构在水下冲击波作用下的能量耗散与失效机理研究
项目编号: No.51509115
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 其他
项目作者: 任鹏
作者单位: 江苏科技大学
项目金额: 20万元
中文摘要: 复合材料夹层结构具有质轻、低磁和良好的吸能性能,是轻型快速舰艇结构设计中的重要组成部分。但由于实验条件的限制,复合材料夹层结构在水下冲击波载荷作用下的动态力学响应相关参数尚未被精确获得,吸能毁伤特性也未被系统的研究,严重影响了复合材料夹层板在舰艇防护结构中的应用。本项目拟基于非药式水下爆炸冲击波等效加载技术,结合三维非接触式测量方法,实现对水下冲击波作用下复合材料夹层结构动态响应参数的精确测量,给出其典型失效模式与水下冲击波强度间的定量关系;系统研究复合材料夹层结构相关力学性能对其能量耗散的影响规律;进而结合宏观动态测量及细观诊断技术,获得水下冲击波作用下复合材料夹层结构的毁伤机理,并建立相应的失效判据准则。该项目的实施对深入认识复合材料夹层结构的抗冲击防护特性具有重要意义,并将为其在舰艇新型抗冲击防护结构中的设计应用提供理论支持和科学依据。
中文关键词: 水下爆炸;复合材料结构;动态响应;能量耗散;失效机理
英文摘要: Composite sandwich structures are of current interest in fast and stealth marine structures, because they exhibt low weight, low magnetic signature and energy absorption. However, due to experimental difficulties, the dynamic response parameters of composite sandwich structure have never been accurately measured under underwater shock loading. Besides, the energy absorption character and failure mechanism were not investagated systematically. The unclear properties of composite sandwich panels show negative effects on their application to marine structures. In this project, we proposed to measure the dynamic response parameters of composite sandwich panels subjected to underwater shock loading by the combination of non-explosive underwater explosion impulsive loading technology and 3D digital spckle correlation method. For composite sandwich panels, the quantitative relationship between the failure modes and the applied impulse will be obtained. Aimed to reveal the energy absorption and failure mechanism of the composite sandwich panels, we will systematically study the impact of the energy absorption characteristics on the mechanics properties. Based on the above, the failure criterion of composite sandwich panels subjected to underwater shock loading will be established. This project will shed light on the anti-shock behaviors of composite sandwich panels, and will also provide theory and scientific basis for new structure design of naval ships.
英文关键词: underwater explosion;composite structure;dynamic response;energy dissipation;failure mechanism