We propose a novel method to generate underwater object imagery that is acoustically compliant with that generated by side-scan sonar using the Unreal Engine. We describe the process to develop, tune, and generate imagery to provide representative images for use in training automated target recognition (ATR) and machine learning algorithms. The methods provide visual approximations for acoustic effects such as back-scatter noise and acoustic shadow, while allowing fast rendering with C++ actor in UE for maximizing the size of potential ATR training datasets. Additionally, we provide analysis of its utility as a replacement for actual sonar imagery or physics-based sonar data.
翻译:我们提出一种新的方法来生成水下天体图像,该方法在声学上与使用非真实引擎的侧扫声纳生成的图像相一致。我们描述开发、调制和生成图像的过程,以便为培训自动化目标识别和机器学习算法提供具有代表性的图像,用于培训自动化目标识别和机器学习算法。这些方法为后散射噪音和声影等声学效应提供视觉近似值,同时允许与UE的C++行为者快速转换,以尽可能扩大潜在的ATR培训数据集的规模。此外,我们还分析其作为实际声纳图像或物理声纳数据的替代工具的实用性。