In this work, we present a regression-based ordinal regression algorithm for supervised classification of instances into ordinal categories. In contrast to previous methods, in this work the decision boundaries between categories are predefined, and the algorithm learns to project the input examples onto their appropriate scores according to these predefined boundaries. This is achieved by adding a novel threshold-based pairwise loss function that aims at minimizing the regression error, which in turn minimizes the Mean Absolute Error (MAE) measure. We implemented our proposed architecture-agnostic method using the CNN-framework for feature extraction. Experimental results on five real-world benchmarks demonstrate that the proposed algorithm achieves the best MAE results compared to state-of-the-art ordinal regression algorithms.
翻译:在这项工作中,我们展示了一种基于回归的正反回归算法,用于对事件进行有监督的按正反向分类。与以往的方法不同,在这项工作中,不同类别之间的决定界限是预先界定的,而算法则根据这些预先界定的界限将输入实例投进到适当的分数中。这通过增加一个新的基于门槛的双向损失函数来实现,该功能旨在将回归错误最小化,这反过来又最大限度地减少平均绝对错误(MAE)的测量。我们运用CNN特征提取框架实施了我们提议的建筑-不可知性方法。五个现实世界基准的实验结果表明,与最先进的正反向回归算法相比,拟议的算法取得了最佳的MAE结果。