Vision transformers have recently set off a new wave in the field of medical image analysis due to their remarkable performance on various computer vision tasks. However, recent hybrid-/transformer-based approaches mainly focus on the benefits of transformers in capturing long-range dependency while ignoring the issues of their daunting computational complexity, high training costs, and redundant dependency. In this paper, we propose to employ adaptive pruning to transformers for medical image segmentation and propose a lightweight and effective hybrid network APFormer. To our best knowledge, this is the first work on transformer pruning for medical image analysis tasks. The key features of APFormer mainly are self-supervised self-attention (SSA) to improve the convergence of dependency establishment, Gaussian-prior relative position embedding (GRPE) to foster the learning of position information, and adaptive pruning to eliminate redundant computations and perception information. Specifically, SSA and GRPE consider the well-converged dependency distribution and the Gaussian heatmap distribution separately as the prior knowledge of self-attention and position embedding to ease the training of transformers and lay a solid foundation for the following pruning operation. Then, adaptive transformer pruning, both query-wise and dependency-wise, is performed by adjusting the gate control parameters for both complexity reduction and performance improvement. Extensive experiments on two widely-used datasets demonstrate the prominent segmentation performance of APFormer against the state-of-the-art methods with much fewer parameters and lower GFLOPs. More importantly, we prove, through ablation studies, that adaptive pruning can work as a plug-n-play module for performance improvement on other hybrid-/transformer-based methods. Code is available at https://github.com/xianlin7/APFormer.


翻译:视觉变异器最近由于在各种计算机图像任务方面的出色表现,在医学图像分析领域掀起了新的浪潮。然而,最近的混合/变异器方法主要侧重于变异器在获取长距离依赖性方面的优势,同时忽视其令人生畏的计算复杂性、高斯-位次相对位置嵌入(GRPE)等问题。在本文中,我们提议对变异器进行适应性裁剪,以进行医学图像分割,并提议一个轻巧和有效的混合网络AP Former。据我们的最佳了解,这是关于医疗图像分析任务的变异器调整的首次工作。APFormer公司的主要特征主要是自我监督的自我关注参数(SS),以改善依赖性能的趋同,Gausian-位位次位置相对位置嵌入(GRPEPE)促进了解定位信息,调整性能调整以删除多余的计算和感知信息。 具体地说,SSA和GARPE分别将依赖性分布和高斯位变热制的分布作为先前的自我保存和定位状态知识,通过更精确的变现的变现变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式变式的运行式的运行式运行式运行式运行式运行式运行式运行式运行式运行式运行式运行式运行式运行式操作方法,这是一种更式的运行式变式变式变式变换式的功能基础。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
19+阅读 · 2021年6月15日
W-net: Bridged U-net for 2D Medical Image Segmentation
Arxiv
19+阅读 · 2018年7月12日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员