Discovering new medicines is the hallmark of human endeavor to live a better and longer life. Yet the pace of discovery has slowed down as we need to venture into more wildly unexplored biomedical space to find one that matches today's high standard. Modern AI-enabled by powerful computing, large biomedical databases, and breakthroughs in deep learning-offers a new hope to break this loop as AI is rapidly maturing, ready to make a huge impact in the area. In this paper we review recent advances in AI methodologies that aim to crack this challenge. We organize the vast and rapidly growing literature of AI for drug discovery into three relatively stable sub-areas: (a) representation learning over molecular sequences and geometric graphs; (b) data-driven reasoning where we predict molecular properties and their binding, optimize existing compounds, generate de novo molecules, and plan the synthesis of target molecules; and (c) knowledge-based reasoning where we discuss the construction and reasoning over biomedical knowledge graphs. We will also identify open challenges and chart possible research directions for the years to come.
翻译:发现新药是人类努力改善和延长生命的标志。然而,发现速度已经放缓,因为我们需要冒险进入更加疯狂的、未探索的生物医学空间,以找到符合当今高标准的空间。 由强大的计算、大型生物医学数据库和深层次学习者的突破带动的现代人工智能新希望打破这一循环,因为人工智能正在迅速成熟,准备在该地区产生巨大影响。在本文件中,我们审查了旨在克服这一挑战的AI方法的最新进展。我们组织了大量迅速增长的AI药物发现文献,分为三个相对稳定的子领域:(a) 分子序列和几何图方面的代表性学习;(b) 数据驱动推理,我们预测分子特性及其结合性、优化现有化合物、产生脱硫分子和规划目标分子的合成;以及(c) 知识推理,我们讨论生物医学知识图的构建和推理。我们还将确定公开的挑战,并规划未来几年可能的研究方向。