BERT4Rec is an effective model for sequential recommendation based on the Transformer architecture. In the original publication, BERT4Rec claimed superiority over other available sequential recommendation approaches (e.g. SASRec), and it is now frequently being used as a state-of-the art baseline for sequential recommendations. However, not all subsequent publications confirmed this result and proposed other models that were shown to outperform BERT4Rec in effectiveness. In this paper we systematically review all publications that compare BERT4Rec with another popular Transformer-based model, namely SASRec, and show that BERT4Rec results are not consistent within these publications. To understand the reasons behind this inconsistency, we analyse the available implementations of BERT4Rec and show that we fail to reproduce results of the original BERT4Rec publication when using their default configuration parameters. However, we are able to replicate the reported results with the original code if training for a much longer amount of time (up to 30x) compared to the default configuration. We also propose our own implementation of BERT4Rec based on the Hugging Face Transformers library, which we demonstrate replicates the originally reported results on 3 out 4 datasets, while requiring up to 95% less training time to converge. Overall, from our systematic review and detailed experiments, we conclude that BERT4Rec does indeed exhibit state-of-the-art effectiveness for sequential recommendation, but only when trained for a sufficient amount of time. Additionally, we show that our implementation can further benefit from adapting other Transformer architectures that are available in the Hugging Face Transformers library (e.g. using disentangled attention, as provided by DeBERTa, or larger hidden layer size cf. ALBERT).


翻译:BERT4Rec 是基于变换器架构的顺序建议的有效模式。 在原始出版物中, BERT4Rec 声称优于其他可用的顺序建议方法(如SASRec), 而现在,它经常被用作顺序建议的最先进的基线。 但是,并非所有后续出版物都证实了这一结果,并提出了其他显示优于 BERT4Rec 有效性的模型。 在本文中, 我们系统地审查所有将 BERT4Rec 与另一个流行的变换器模型, 即SASRec 进行比较的出版物, 并显示 BERT4Rec 的结果在这些出版物中不一致的原因。 为了理解这一不一致的原因, 我们分析 BERT4Rec 的现有执行情况, 并表明, 当使用其默认配置参数时, 我们无法复制原始的 BERT4Rec 发布的结果。 然而, 我们能够复制所报告的结果, 如果培训的时间要长得多, 最多为30xx, 则只能从默认配置中复制。 我们还提议执行 BERT4Rec 。 我们提议, 依据 HUG Fef 变换 详细的版本图书馆, 显示我们最初使用 4 系统化的版本的系统化系统化系统化系统化的系统化的系统化的版本, 。

0
下载
关闭预览

相关内容

专知会员服务
90+阅读 · 2021年6月29日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
23+阅读 · 2018年8月3日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员