This paper is aiming to apply neural network algorithm for predicting the process response (NOx emissions) from degrading natural gas turbines. Nine different process variables, or predictors, are considered in the predictive modelling. It is found out that the model trained by neural network algorithm should use part of recent data in the training and validation sets accounting for the impact of the system degradation. R-Square values of the training and validation sets demonstrate the validity of the model. The residue plot, without any clear pattern, shows the model is appropriate. The ranking of the importance of the process variables are demonstrated and the prediction profile confirms the significance of the process variables. The model trained by using neural network algorithm manifests the optimal settings of the process variables to reach the minimum value of NOx emissions from the degrading gas turbine system.
翻译:本文旨在应用神经网络算法来预测退化的天然气涡轮机的工艺反应(NOx排放量),预测模型考虑了九个不同的工艺变量或预测器,发现神经网络算法所培训的模型应使用培训和验证组中的最新数据的一部分,以计算系统退化的影响。培训和验证组的R-Square值证明了模型的有效性。残留图显示模型是适当的,没有明确的模式。过程变量的重要性的排序得到证明,预测剖析证实了过程变量的重要性。通过使用神经网络算法所培训的模型显示了工艺变量的最佳设置,以达到退化的气体涡轮系统NOx排放量的最低值。