We compare two orthogonal semi-supervised learning techniques, namely tri-training and pretrained word embeddings, in the task of dependency parsing. We explore language-specific FastText and ELMo embeddings and multilingual BERT embeddings. We focus on a low resource scenario as semi-supervised learning can be expected to have the most impact here. Based on treebank size and available ELMo models, we select Hungarian, Uyghur (a zero-shot language for mBERT) and Vietnamese. Furthermore, we include English in a simulated low-resource setting. We find that pretrained word embeddings make more effective use of unlabelled data than tri-training but that the two approaches can be successfully combined.
翻译:我们比较了两种正统半监督的学习技术,即依赖分析任务中的三门培训和预先训练的字嵌入。我们探索了语言特定快图和ELMo嵌入和多语种的BERT嵌入。我们关注的是一种低资源设想方案,因为半监督的学习可以在这里产生最大的影响。根据树银行规模和现有的ELMO模型,我们选择了匈牙利语、Uyghur语(MBERT的零速语言)和越南语。此外,我们将英语纳入了模拟的低资源设置。我们发现,预先训练的字嵌入比三门培训更有效地使用未贴标签的数据,但这两种方法可以成功地结合起来。