When users lack specific knowledge of various system parameters, their uncertainty may lead them to make undesirable deviations in their decision making. To alleviate this, an informed system operator may elect to signal information to uninformed users with the hope of persuading them to take more preferable actions. In this work, we study public and truthful signalling mechanisms in the context of Bayesian congestion games on parallel networks. We provide bounds on the possible benefit a signalling policy can provide with and without the concurrent use of monetary incentives. We find that though revealing information can reduce system cost in some settings, it can also be detrimental and cause worse performance than not signalling at all. However, by utilizing both signalling and incentive mechanisms, the system operator can guarantee that revealing information does not worsen performance while offering similar opportunities for improvement. These findings emerge from the closed form bounds we derive on the benefit a signalling policy can provide. We provide a numerical example which illustrates the phenomenon that revealing more information can degrade performance when incentives are not used and improves performance when incentives are used.


翻译:当用户缺乏有关各种系统参数的具体知识时,他们的不确定性可能会导致他们在决策中做出不良偏差。为了缓解这种情况,知情的系统运营商可以选择向不知情的用户发出信息,希望说服他们采取更可取的行动。在这项工作中,我们研究了公开和真实的信号机制,其特定背景是并行网络上的贝叶斯拥堵博弈。我们可以在有或没有采用货币激励的情况下提供存在利润的信息发出政策的边界。我们发现,虽然揭示信息可以在某些设置中降低系统成本,但它也可能会有害,并导致比不发出信号更差的性能。然而,通过同时使用信号和激励机制,系统操作员可以确保揭示信息不会使绩效下降,同时提供类似的改进机会。这些发现来自我们推导出的利润存在边界。我们提供了一个数值示例,说明了不使用激励时揭示更多信息会降低性能的现象,而在使用激励时会提高性能。

0
下载
关闭预览

相关内容

【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
【脑机接口教程】Machine Learning for BCI,NeurotechEDU
专知会员服务
34+阅读 · 2022年2月14日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
92+阅读 · 2021年5月17日
Arxiv
11+阅读 · 2021年3月25日
VIP会员
相关VIP内容
【2022新书】高效深度学习,Efficient Deep Learning Book
专知会员服务
117+阅读 · 2022年4月21日
【脑机接口教程】Machine Learning for BCI,NeurotechEDU
专知会员服务
34+阅读 · 2022年2月14日
【新书】贝叶斯网络进展与新应用,附全书下载
专知会员服务
119+阅读 · 2019年12月9日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员