We define and study a variant of QMA (Quantum Merlin Arthur) in which Arthur can make multiple non-collapsing measurements to Merlin's witness state, in addition to ordinary collapsing measurements. By analogy to the class PDQP defined by Aaronson, Bouland, Fitzsimons, and Lee (2014), we call this class PDQMA. Our main result is that PDQMA = NEXP; this result builds on the MIP = NEXP Theorem and complements the result of Aaronson (2018) that PDQP/qpoly = ALL. While the result has little to do with quantum mechanics, we also show a more "quantum" result: namely, that QMA with the ability to inspect the entire history of a hidden variable is equal to NEXP, under mild assumptions on the hidden-variable theory. We also observe that a quantum computer, augmented with quantum advice and the ability to inspect the history of a hidden variable, can solve any decision problem in polynomial time.
翻译:暂无翻译