In combinatorial reconfiguration, the reconfiguration problems on a vertex subset (e.g., an independent set) are well investigated. In these problems, some tokens are placed on a subset of vertices of the graph, and there are three natural reconfiguration rules called ``token sliding,'' ``token jumping,'' and ``token addition and removal''. In the context of computational complexity of puzzles, the sliding block puzzles play an important role. Depending on the rules and set of pieces, the sliding block puzzles characterize the computational complexity classes including P, NP, and PSPACE. The sliding block puzzles correspond to the token sliding model in the context of combinatorial reconfiguration. On the other hand, a relatively new notion of jumping block puzzles is proposed in puzzle society. This is the counterpart to the token jumping model of the combinatorial reconfiguration problems in the context of block puzzles. We investigate several variants of jumping block puzzles and determine their computational complexities.


翻译:在组合重组中,对顶端子集(如独立的一组)的重新配置问题进行了充分调查。在这些问题上,有些符号被放在图形的顶点子子上,有三种自然重新配置规则叫做“ 点滑动 ”, “ 点跳, ” 和“ 点添加和移除 ” 。 在拼图的计算复杂性方面, 滑动块拼图起着重要作用。 根据规则和一组碎片, 滑动块拼图是计算复杂分类的特性, 包括 P、 NP 和 PSPACE 。 滑动块拼图在组合重组的背景下对应了象征性滑动模型。 另一方面, 在拼图社会中提出了较新的跳动块拼图概念 。 这是块拼图中拼图中拼图问题象征性跳动模型的对应点 。 我们调查了跳动块拼图的几种变式, 并确定其计算复杂性 。

0
下载
关闭预览

相关内容

CC在计算复杂性方面表现突出。它的学科处于数学与计算机理论科学的交叉点,具有清晰的数学轮廓和严格的数学格式。官网链接:https://link.springer.com/journal/37
专知会员服务
79+阅读 · 2021年5月4日
Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
15+阅读 · 2020年7月27日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年12月12日
ACL 2018 | 利用Lattice LSTM的最优中文命名实体识别方法
黑龙江大学自然语言处理实验室
7+阅读 · 2018年7月3日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
3+阅读 · 2018年2月11日
VIP会员
相关VIP内容
专知会员服务
79+阅读 · 2021年5月4日
Google-EfficientNet v2来了!更快,更小,更强!
专知会员服务
18+阅读 · 2021年4月4日
专知会员服务
76+阅读 · 2021年3月16日
专知会员服务
15+阅读 · 2020年7月27日
专知会员服务
60+阅读 · 2020年3月19日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
相关资讯
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
已删除
将门创投
7+阅读 · 2018年12月12日
ACL 2018 | 利用Lattice LSTM的最优中文命名实体识别方法
黑龙江大学自然语言处理实验室
7+阅读 · 2018年7月3日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
【推荐】决策树/随机森林深入解析
机器学习研究会
5+阅读 · 2017年9月21日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员