In combinatorial reconfiguration, the reconfiguration problems on a vertex subset (e.g., an independent set) are well investigated. In these problems, some tokens are placed on a subset of vertices of the graph, and there are three natural reconfiguration rules called ``token sliding,'' ``token jumping,'' and ``token addition and removal''. In the context of computational complexity of puzzles, the sliding block puzzles play an important role. Depending on the rules and set of pieces, the sliding block puzzles characterize the computational complexity classes including P, NP, and PSPACE. The sliding block puzzles correspond to the token sliding model in the context of combinatorial reconfiguration. On the other hand, a relatively new notion of jumping block puzzles is proposed in puzzle society. This is the counterpart to the token jumping model of the combinatorial reconfiguration problems in the context of block puzzles. We investigate several variants of jumping block puzzles and determine their computational complexities.
翻译:在组合重组中,对顶端子集(如独立的一组)的重新配置问题进行了充分调查。在这些问题上,有些符号被放在图形的顶点子子上,有三种自然重新配置规则叫做“ 点滑动 ”, “ 点跳, ” 和“ 点添加和移除 ” 。 在拼图的计算复杂性方面, 滑动块拼图起着重要作用。 根据规则和一组碎片, 滑动块拼图是计算复杂分类的特性, 包括 P、 NP 和 PSPACE 。 滑动块拼图在组合重组的背景下对应了象征性滑动模型。 另一方面, 在拼图社会中提出了较新的跳动块拼图概念 。 这是块拼图中拼图中拼图问题象征性跳动模型的对应点 。 我们调查了跳动块拼图的几种变式, 并确定其计算复杂性 。