We present PriFit, a semi-supervised approach for label-efficient learning of 3D point cloud segmentation networks. PriFit combines geometric primitive fitting with point-based representation learning. Its key idea is to learn point representations whose clustering reveals shape regions that can be approximated well by basic geometric primitives, such as cuboids and ellipsoids. The learned point representations can then be re-used in existing network architectures for 3D point cloud segmentation, and improves their performance in the few-shot setting. According to our experiments on the widely used ShapeNet and PartNet benchmarks, PriFit outperforms several state-of-the-art methods in this setting, suggesting that decomposability into primitives is a useful prior for learning representations predictive of semantic parts. We present a number of ablative experiments varying the choice of geometric primitives and downstream tasks to demonstrate the effectiveness of the method.
翻译:我们提出PriFit, 这是一种半监督的3D点云分化网络标签效率学习方法。 PriFit 将几何原始与点基表示法学习结合起来。 它的关键想法是学习点表达方式, 其组合显示基本几何原始(如幼质和幼质)能够非常接近的形状区域。 然后, 学习点表达方式可以在现有的3D点云分化网络结构中重新使用, 并改善其在短片环境中的性能。 根据我们对广泛使用的 ShapeNet 和 PartNet 基准的实验, PriFit 超越了在这一环境中的几种最先进的方法, 这表明, 原始的可变化性是学习对语义部分进行预测的学习表现的有用前程。 我们介绍了一些不同几度原始和下游任务选择的混合实验, 以证明方法的有效性。