In STOC'95 [ADMSS'95] Arya et al. showed that any set of $n$ points in $\mathbb R^d$ admits a $(1+\epsilon)$-spanner with hop-diameter at most 2 (respectively, 3) and $O(n \log n)$ edges (resp., $O(n \log \log n)$ edges). They also gave a general upper bound tradeoff of hop-diameter at most $k$ and $O(n \alpha_k(n))$ edges, for any $k \ge 2$. The function $\alpha_k$ is the inverse of a certain Ackermann-style function at the $\lfloor k/2 \rfloor$th level of the primitive recursive hierarchy, where $\alpha_0(n) = \lceil n/2 \rceil$, $\alpha_1(n) = \left\lceil \sqrt{n} \right\rceil$, $\alpha_2(n) = \lceil \log{n} \rceil$, $\alpha_3(n) = \lceil \log\log{n} \rceil$, $\alpha_4(n) = \log^* n$, $\alpha_5(n) = \lfloor \frac{1}{2} \log^*n \rfloor$, \ldots. Roughly speaking, for $k \ge 2$ the function $\alpha_{k}$ is close to $\lfloor \frac{k-2}{2} \rfloor$-iterated log-star function, i.e., $\log$ with $\lfloor \frac{k-2}{2} \rfloor$ stars. Also, $\alpha_{2\alpha(n)+4}(n) \le 4$, where $\alpha(n)$ is the one-parameter inverse Ackermann function, which is an extremely slowly growing function. Whether or not this tradeoff is tight has remained open, even for the cases $k = 2$ and $k = 3$. Two lower bounds are known: The first applies only to spanners with stretch 1 and the second is sub-optimal and applies only to sufficiently large (constant) values of $k$. In this paper we prove a tight lower bound for any constant $k$: For any fixed $\epsilon > 0$, any $(1+\epsilon)$-spanner for the uniform line metric with hop-diameter at most $k$ must have at least $\Omega(n \alpha_k(n))$ edges.


翻译:STOC'95 [ADMS'95] Arya et al. 显示任何一组美元($=mathbrb R) 美元($1 ⁇ epsilon) 允许最多2美元(分别为3美元) 和$(n\log n) 邊緣( resp., $(n\log\log n) = 平面( $) 平面( =c) 平面( $2k) 美元( 美元) 和$( n) 平面( $) 美元( 美元), 任何美元( n) 美元 (n) 美元( pha_ k) 美元( 美元) 。 美元(n) 平面( 美元) 平面(n) 平面( = 美元) 美元( = 美元( = 美元) 立面( = 美元) 立面( = 美元) 立面( = 美元)

0
下载
关闭预览

相关内容

专知会员服务
30+阅读 · 2021年6月12日
专知会员服务
158+阅读 · 2020年1月16日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年4月19日
Arxiv
0+阅读 · 2022年4月17日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Latest News & Announcements of the Industry Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年7月29日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2016年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
3+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员