Finite element methods for Maxwell's equations are highly sensitive to the conformity of approximation spaces, and non-conforming methods may cause loss of convergence. This fact leads to an essential obstacle for almost all the interface-unfitted mesh methods in the literature regarding the application to Maxwell interface problems, as they are based on non-conforming spaces. In this work, a novel immersed virtual element method for solving a 3D Maxwell interface problems is developed, and the motivation is to combine the conformity of virtual element spaces and robust approximation capabilities of immersed finite element spaces. The proposed method is able to achieve optimal convergence for a 3D Maxwell interface problem. To develop a systematic framework, the $H^1$, $\mathbf{H}(\mathrm{curl})$ and $\mathbf{H}(\mathrm{div})$ interface problems and their corresponding problem-orientated immersed virtual element spaces are considered all together. In addition, the de Rham complex will be established based on which the HX preconditioner can be used to develop a fast solver for the $\mathbf{H}(\mathrm{curl})$ interface problem.
翻译:Maxwell 方程式的精度元素方法对近似空格的匹配非常敏感, 而不兼容的方法可能会导致趋同。 这一事实导致文献中几乎所有关于对 Maxwell 界面问题应用的界面不适应的网格方法都面临一个基本障碍, 因为这些方法基于不兼容的空格。 在此工作中, 开发了用于解决 3D Maxwell 界面问题的新型浸泡虚拟元素方法, 其动机是结合虚拟元素空间的兼容性和浸入的有限元素空间的稳健近似能力。 拟议的方法能够实现3D Maxwell 界面问题的最佳趋同。 要开发一个系统框架, $H1$, $\\ mathbf{H} (\ mathr{cur} $\mabff{H} (\mathrm{ div}) 界面问题及其相应的问题导向的隐蔽虚拟元素空间。 此外, 将建立 de Rham 复合体, 依据此框架, HX 前提可以开发一个快速解决方案。