Strong physical unclonable functions (PUFs) provide a low-cost authentication primitive for resource constrained devices. However, most strong PUF architectures can be modeled through learning algorithms with a limited number of CRPs. In this paper, we introduce the concept of non-monotonic response quantization for strong PUFs. Responses depend not only on which path is faster, but also on the distance between the arriving signals. Our experiments show that the resulting PUF has increased security against learning attacks. To demonstrate, we designed and implemented a non-monotonically quantized ring-oscillator based PUF in 65 nm technology. Measurement results show nearly ideal uniformity and uniqueness, with bit error rate of 13.4% over the temperature range from 0 C to 50 C.
翻译:强大的物理无法调试功能(PUFs)为资源受限装置提供了一个低成本的认证原始功能。 但是,大多数强大的PUF结构可以通过学习算法建模,其中的CRP数量有限。 在本文中,我们引入了强力PUF的非分子响应量化概念。 响应不仅取决于哪条路更快,而且取决于到达信号之间的距离。 我们的实验表明,由此形成的PUF提高了对学习攻击的安全感。 为了证明,我们在65海里的技术中设计并实施了以PUF为基地的无孔化环振荡器。 测量结果显示,几乎理想的统一性和独特性,在温度范围从0摄氏度到50摄氏度之间,误差率为13.4%。