Robust controllers ensure stability in feedback loops designed under uncertainty but at the cost of performance. Model uncertainty in time-invariant systems can be reduced by recently proposed learning-based methods, thus improving the performance of robust controllers using data. However, in practice, many systems also exhibit uncertainty in the form of changes over time, e.g., due to weight shifts or wear and tear, leading to decreased performance or instability of the learning-based controller. We propose an event-triggered learning algorithm that decides when to learn in the face of uncertainty in the LQR problem with rare or slow changes. Our key idea is to switch between robust and learned controllers. For learning, we first approximate the optimal length of the learning phase via Monte-Carlo estimations using a probabilistic model. We then design a statistical test for uncertain systems based on the moment-generating function of the LQR cost. The test detects changes in the system under control and triggers re-learning when control performance deteriorates due to system changes. We demonstrate improved performance over a robust controller baseline in a numerical example.
翻译:强力控制器确保了在不确定情况下设计但以性能为代价的反馈循环的稳定性。通过最近提出的基于学习的方法,可以减少时间变化系统的模型不确定性,从而改善使用数据的强力控制器的性能。然而,在实践中,许多系统还以时间变化的形式表现出不确定性,例如,由于重量变换或磨损,导致学习控制器的性能下降或不稳定。我们建议一种事件触发的学习算法,在面临LQR问题的不确定性时决定何时学习,而LQR问题变化很少或缓慢。我们的关键想法是转换强力控制器和学习的控制器。为了学习,我们首先通过使用概率模型,通过Monte-Carlo估计来估计学习阶段的最佳长度。我们随后根据LQR成本的瞬间生成功能设计一个不确定系统的统计测试。测试检测了受控制的系统的变化,并在控制性能因系统变化而恶化时触发再学习。我们用数字示例显示,在稳健的控制控制器基线上的表现有所改善。