Robust quantization improves the tolerance of networks for various implementations, allowing reliable output in different bit-widths or fragmented low-precision arithmetic. In this work, we perform extensive analyses to identify the sources of quantization error and present three insights to robustify a network against quantization: reduction of error propagation, range clamping for error minimization, and inherited robustness against quantization. Based on these insights, we propose two novel methods called symmetry regularization (SymReg) and saturating nonlinearity (SatNL). Applying the proposed methods during training can enhance the robustness of arbitrary neural networks against quantization on existing post-training quantization (PTQ) and quantization-aware training (QAT) algorithms and enables us to obtain a single weight flexible enough to maintain the output quality under various conditions. We conduct extensive studies on CIFAR and ImageNet datasets and validate the effectiveness of the proposed methods.
翻译:强力量化提高了各种实施网络的容度, 允许不同位宽或零散的低精度算术中可靠输出。 在这项工作中, 我们进行了广泛的分析, 以查明量化错误的来源, 并提出了三点见解, 以巩固网络对抗量化: 减少错误传播, 缩小范围, 尽量减少错误, 以及 相对于量化而继承的稳健性。 基于这些洞察, 我们提出了两种新颖方法, 称为对称规范( SymReg) 和饱和非线性( SatNL ) 。 在培训期间应用拟议方法可以加强任意神经网络的稳健性, 防止现有培训后量化( PTQQQ) 和量化-aware 培训(QAT) 算法的量化, 并使我们能够获得足以保持不同条件下产出质量的单一重量。 我们对 CIRA 和图像网络数据集进行广泛研究, 并验证拟议方法的有效性 。