A polynomial homotopy is a family of polynomial systems, where the systems in the family depend on one parameter. If for one parameter we know a regular solution, then what is the nearest value of the parameter for which the solution in the polynomial homotopy is singular? Applying the ratio theorem of Fabry on the solution paths defined by the homotopy, extrapolation methods can accurately locate the nearest singularity. Once the radius of convergence is known, then via a transformation of the continuation parameter, the series expansions of the solution curves will have convergence radius equal to one. To compute all coefficients of the series we propose the quaternion Fourier transform.
翻译:多式同族体是多式系统的一个组合, 家庭中的系统依赖于一个参数。 如果对于一个参数我们知道一个常规的解决方案, 那么多式同族体中解决方案是单数的参数的最接近值是什么? 在同族体定义的解决方案路径上应用法布里的比重理论, 外推法可以准确定位最接近的单数。 一旦已知汇聚的半径, 然后通过对连续性参数进行转换, 解决方案曲线的序列扩展将具有等于一个的集合半径。 要计算出序列中所有系数, 我们提议四ier之四变 。