This paper reviews the most common situations where one or more regularity conditions which underlie classical likelihood-based parametric inference fail. We identify three main classes of problems: boundary problems, indeterminate parameter problems--which include non-identifiable parameters and singular information matrices--and change-point problems. The review focuses on the large-sample properties of the likelihood ratio statistic, though other approaches to hypothesis testing and connections to estimation may be mentioned in passing. We emphasize analytical solutions and acknowledge software implementations where available. Some summary insight about the possible tools to derivate the key results is given.
翻译:本文件回顾了造成传统的可能性参数参数推论失败的一个或多个常规性条件的最常见情况。我们确定了三大类问题:边界问题、不确定参数问题(包括无法识别的参数)和单一信息矩阵和变化点问题。审查的重点是概率统计的大规模抽样特征,尽管可以顺便提及其他假设测试和估算连接的方法。我们强调分析性解决办法,承认在可行的情况下实施软件。对得出关键结果的可能工具作了一些简要的深入了解。