Knowledge distillation (KD) has become a well established paradigm for compressing deep neural networks. The typical way of conducting knowledge distillation is to train the student network under the supervision of the teacher network to harness the knowledge at one or multiple spots (i.e., layers) in the teacher network. The distillation spots, once specified, will not change for all the training samples, throughout the whole distillation process. In this work, we argue that distillation spots should be adaptive to training samples and distillation epochs. We thus propose a new distillation strategy, termed spot-adaptive KD (SAKD), to adaptively determine the distillation spots in the teacher network per sample, at every training iteration during the whole distillation period. As SAKD actually focuses on "where to distill" instead of "what to distill" that is widely investigated by most existing works, it can be seamlessly integrated into existing distillation methods to further improve their performance. Extensive experiments with 10 state-of-the-art distillers are conducted to demonstrate the effectiveness of SAKD for improving their distillation performance, under both homogeneous and heterogeneous distillation settings. Code is available at https://github.com/zju-vipa/spot-adaptive-pytorch


翻译:在教师网络的监督下,进行知识蒸馏的典型方式是在教师网络的监督下对学生网络进行培训,以便在教师网络中的一个或多个地点(即层)利用知识; 在整个蒸馏过程中,蒸馏点一旦指定,不会改变所有培训样品的蒸馏点。 在这项工作中,我们主张蒸馏点应适应于对样品和蒸馏器的训练。 因此,我们提出了一个新的蒸馏战略,称为现场施洗式KD(SAKD),以便在教师网络每个样本的每个样本中适应性地确定教师网络的蒸馏点。 SAKD实际上侧重于“ 在哪里蒸馏”而不是“ 蒸馏什么”,因为大多数现有工作都广泛调查过,因此它可以顺利地融入现有的蒸馏方法,以进一步提高它们的性能。 与10个州的蒸馏器(SAKD)进行广泛的实验,以展示教师网络每个样本的蒸馏点的蒸馏点,在整个蒸馏期期间,每个培训中,每个样本的蒸馏点的蒸馏点都是在SAK/stampistrato 中,在Siltotototo SAK正在 SAK/staltototototototo

0
下载
关闭预览

相关内容

专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Arxiv
14+阅读 · 2021年7月20日
Arxiv
13+阅读 · 2021年3月29日
VIP会员
相关VIP内容
专知会员服务
61+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
相关基金
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
Top
微信扫码咨询专知VIP会员