Surrogate risk minimization is an ubiquitous paradigm in supervised machine learning, wherein a target problem is solved by minimizing a surrogate loss on a dataset. Surrogate regret bounds, also called excess risk bounds, are a common tool to prove generalization rates for surrogate risk minimization. While surrogate regret bounds have been developed for certain classes of loss functions, such as proper losses, general results are relatively sparse. We provide two general results. The first gives a linear surrogate regret bound for any polyhedral (piecewise-linear and convex) surrogate, meaning that surrogate generalization rates translate directly to target rates. The second shows that for sufficiently non-polyhedral surrogates, the regret bound is a square root, meaning fast surrogate generalization rates translate to slow rates for the target. Together, these results suggest polyhedral surrogates are optimal in many cases.


翻译:顶替风险最小化是受监督的机器学习的无处不在的模式,通过将代用损失在数据集中最小化来解决目标问题。代用遗憾界限,也称为超重风险界限,是证明代用风险最小化的通用率的常用工具。虽然代用遗憾界限是为某些类别的损失功能开发的,如适当损失,但一般结果相对较少。我们提供了两个一般性结果。第一个结果是线性代用遗憾,任何多面(半线和锥形)代用模型,这意味着代用一般化比率直接转化为目标比率。第二个结果表明,对于足够非多面类的代用机器人而言,后一种遗憾界限是平方根,这意味着快速代用通用率转化为目标的慢速率。这些结果共同表明,多面代用代用模型在许多情况下是最佳的。

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年12月27日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
word2Vec总结
AINLP
3+阅读 · 2019年11月2日
分布式并行架构Ray介绍
CreateAMind
9+阅读 · 2019年8月9日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
已删除
将门创投
6+阅读 · 2019年4月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
误差反向传播——RNN
统计学习与视觉计算组
18+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员