Reaction-Diffusion equations can present solutions in the form of traveling waves. Such solutions evolve in different spatial and temporal scales and it is desired to construct numerical methods that can adopt a spatial refinement at locations with large gradient solutions. In this work we develop a high order adaptive mesh method based on Chebyshev polynomials with a multidomain approach for the traveling wave solutions of reaction-diffusion systems, where the proposed method uses the non-conforming and non-overlapping spectral multidomain method with the temporal adaptation of the computational mesh. Contrary to the existing multidomain spectral methods for reaction-diffusion equations, the proposed multidomain spectral method solves the given PDEs in each subdomain locally first and the boundary and interface conditions are solved in a global manner. In this way, the method can be parallelizable and is efficient for the large reaction-diffusion system. We show that the proposed method is stable and provide both the one- and two-dimensional numerical results that show the efficacy of the proposed method.


翻译:在这项工作中,我们开发了一种基于Chebyshev 聚积法的高排序适应性网格方法,其基础是Chebyshev 聚积法,并采用多域法,用于反应扩散系统的流动波解方法,其中拟议方法使用不兼容和不重叠的谱谱谱多域法,对计算网段进行时间调整。与现有的反应扩散方程式多多域光谱法相反,拟议的多域谱法首先解决了每个子域的指定PDE,而边界和界面条件则以全球方式解决。这样,该方法可以平行使用,对大型反应扩散系统有效。我们表明,拟议方法是稳定的,提供了显示拟议方法功效的一维和二维数值结果。

0
下载
关闭预览

相关内容

切比雪夫多项式是以俄国著名数学家切比雪夫(Tschebyscheff,又译契贝雪夫等,1821一1894)的名字命名的重要的特殊函数,第一类切比雪夫多项式Tn和第二类切比雪夫多项式Un(简称切比雪夫多项式)。源起于多倍角的余弦函数和正弦函数的展开式,是与棣美弗定理有关、以递归方式定义的多项式序列,是计算数学中的一类特殊函数,对于注入连续函数逼近问题,阻抗变换问题等等的数学、物理学、技术科学中的近似计算有着非常重要的作用。
一份简单《图神经网络》教程,28页ppt
专知会员服务
123+阅读 · 2020年8月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
【阿里巴巴】 AI编译器,AI Compiler @ Alibaba,21页ppt
专知会员服务
44+阅读 · 2019年12月22日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
7+阅读 · 2018年9月27日
Arxiv
3+阅读 · 2018年2月11日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
人工智能 | ACCV 2020等国际会议信息5条
Call4Papers
6+阅读 · 2019年6月21日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
人工智能 | NIPS 2019等国际会议信息8条
Call4Papers
7+阅读 · 2019年3月21日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
人工智能 | COLT 2019等国际会议信息9条
Call4Papers
6+阅读 · 2018年9月21日
gan生成图像at 1024² 的 代码 论文
CreateAMind
4+阅读 · 2017年10月31日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员