Background and Purpose: Accurate motion tracking in MRI-guided Radiotherapy (MRIgRT) is essential for effective treatment delivery. This study aimed to enhance motion tracking precision in MRIgRT through an automatic real-time markerless tracking method using an enhanced Tracking-Learning-Detection (ETLD) framework with automatic segmentation. Materials and Methods: We developed a novel MRIgRT motion tracking and segmentation method by integrating the ETLD framework with an improved Chan-Vese model (ICV), named ETLD+ICV. The ETLD framework was upgraded for real-time cine MRI, including advanced image preprocessing, no-reference image quality assessment, an enhanced median-flow tracker, and a refined detector with dynamic search region adjustments. ICV was used for precise target volume coverage, refining the segmented region frame by frame using tracking results, with key parameters optimized. The method was tested on 3.5D MRI scans from 10 patients with liver metastases. Results: Evaluation of 106,000 frames across 77 treatment fractions showed sub-millimeter tracking errors of less than 0.8mm, with over 99% precision and 98% recall for all subjects in the Beam Eye View(BEV)/Beam Path View(BPV) orientation. The ETLD+ICV method achieved a dice global score of more than 82% for all subjects, demonstrating the method's extensibility and precise target volume coverage. Conclusion: This study successfully developed an automatic real-time markerless motion tracking method for MRIgRT that significantly outperforms current methods. The novel method not only delivers exceptional precision in tracking and segmentation but also shows enhanced adaptability to clinical demands, making it an indispensable asset in improving the efficacy of radiotherapy treatments.
翻译:暂无翻译