The classical Zarankiewicz's problem asks for the maximum number of edges in a bipartite graph on $n$ vertices which does not contain the complete bipartite graph $K_{t,t}$. In one of the cornerstones of extremal graph theory, K\H{o}v\'ari S\'os and Tur\'an proved an upper bound of $O(n^{2-\frac{1}{t}})$. In a celebrated result, Fox et al. obtained an improved bound of $O(n^{2-\frac{1}{d}})$ for graphs of VC-dimension $d$ (where $d<t$). Basit, Chernikov, Starchenko, Tao and Tran improved the bound for the case of semilinear graphs. At SODA'23, Chan and Har-Peled further improved Basit et al.'s bounds and presented (quasi-)linear upper bounds for several classes of geometrically-defined incidence graphs, including a bound of $O(n \log \log n)$ for the incidence graph of points and pseudo-discs in the plane. In this paper we present a new approach to Zarankiewicz's problem, via $\epsilon$-t-nets - a recently introduced generalization of the classical notion of $\epsilon$-nets. We show that the existence of `small'-sized $\epsilon$-t-nets implies upper bounds for Zarankiewicz's problem. Using the new approach, we obtain a sharp bound of $O(n)$ for the intersection graph of two families of pseudo-discs, thus both improving and generalizing the result of Chan and Har-Peled from incidence graphs to intersection graphs. We also obtain a short proof of the $O(n^{2-\frac{1}{d}})$ bound of Fox et al., and show improved bounds for several other classes of geometric intersection graphs, including a sharp $O(n\frac{\log n}{\log \log n})$ bound for the intersection graph of two families of axis-parallel rectangles.
翻译:暂无翻译