Riemannian tangent space methods offer state-of-the-art performance in magnetoencephalography (MEG) and electroencephalography (EEG) based applications such as brain-computer interfaces and biomarker development. One limitation, particularly relevant for biomarker development, is limited model interpretability compared to established component-based methods. Here, we propose a method to transform the parameters of linear tangent space models into interpretable patterns. Using typical assumptions, we show that this approach identifies the true patterns of latent sources, encoding a target signal. In simulations and two real MEG and EEG datasets, we demonstrate the validity of the proposed approach and investigate its behavior when the model assumptions are violated. Our results confirm that Riemannian tangent space methods are robust to differences in the source patterns across observations. We found that this robustness property also transfers to the associated patterns.
翻译:Riemannian 相近空间方法提供了磁脑物理学(MEG)和以电子脑物理学(EEG)为基础的应用(如脑计算机界面和生物标志开发等)的最新性能。一个与生物标志开发特别相关的限制是,与基于组成部分的既定方法相比,模型可解释性有限。我们在这里提出了一个方法,将线性相近空间模型的参数转换成可解释的模式。我们用典型的假设,表明这种方法确定了潜在源的真实模式,编码了目标信号。在模拟和两个真实的MEG和EEG数据集中,我们展示了拟议方法的有效性,并在模型假设被违反时调查其行为。我们的结果证实,Riemannian 相近空间方法对于各种源模式的不同观测是强有力的。我们发现,这种稳健的空间特性也转移到相关的模式。