Let $G$ be a graph of a network system with vertices, $V(G)$, representing physical locations and edges, $E(G)$, representing informational connectivity. A \emph{locating-dominating (LD)} set $S$ is a subset of vertices representing detectors capable of sensing an "intruder" at precisely their location or somewhere in their open-neighborhood -- an LD set must be capable of locating an intruder anywhere in the graph. We explore three types of fault-tolerant LD sets: \emph{redundant LD} sets, which allow a detector to be removed, \emph{error-detecting LD} sets, which allow at most one false negative, and \emph{error-correcting LD} sets, which allow at most one error (false positive or negative). In particular, we determine lower and upper bounds for the minimum density of fault-tolerant locating-dominating sets in the \emph{infinite king grid}; to prove the lower bounds, we introduce a new share-discharging strategy.
翻译:$G$ (G) 是一个网络系统的图表, 代表物理位置和边缘, $V(G) $E(G) $(G), 代表信息连接。 $S} 设置的 $S 是一个代表探测器的子项, 它代表的探测器能够在“入侵者” 的确切位置或开放邻里某处感知到“入侵者”, 一个LD 集必须能够在图形中任何地方定位一个入侵者。 我们探索三种类型的容过错的LD 组: \emph{redant LD} 组, 它允许清除探测器,\emph{error- detecting LD} 组, 它最多允许一个虚假的负值, 和\emph{ror- 校正LD} 组, 它最多允许一个错误( 偏差正或负) 。 特别是, 我们为最小的差分辨错的LD组位密度确定下限和上限。 我们为最小的差分定位的LD组的最小密度。