We used contrastive neural networks to learn useful similarity scores between the 144 cartridge casings in the NBIDE dataset, under the common-but-unknown source paradigm. The common-but-unknown source problem is a problem archetype in forensics where the question is whether two objects share a common source (e.g. were two cartridge casings fired from the same firearm). Similarity scores are often used to interpret evidence under this paradigm. We directly compared our results to a state-of-the-art algorithm, Congruent Matching Cells (CMC). When trained on the E3 dataset of 2967 cartridge casings, contrastive learning achieved an ROC AUC of 0.892. The CMC algorithm achieved 0.867. We also conducted an ablation study where we varied the neural network architecture; specifically, the network's width or depth. The ablation study showed that contrastive network performance results are somewhat robust to the network architecture. This work was in part motivated by the use of similarity scores attained via contrastive learning for standard evidence interpretation methods such as score-based likelihood ratios.
翻译:暂无翻译