The categorical distribution is a natural representation of uncertainty in multi-class segmentations. In the two-class case the categorical distribution reduces to the Bernoulli distribution, for which grayscale morphology provides a range of useful operations. In the general case, applying morphological operations on uncertain multi-class segmentations is not straightforward as an image of categorical distributions is not a complete lattice. Although morphology on color images has received wide attention, this is not so for color-coded or categorical images and even less so for images of categorical distributions. In this work, we establish a set of requirements for morphology on categorical distributions by combining classic morphology with a probabilistic view. We then define operators respecting these requirements, introduce protected operations on categorical distributions and illustrate the utility of these operators on two example tasks: modeling annotator bias in brain tumor segmentations and segmenting vesicle instances from the predictions of a multi-class U-Net.
翻译:绝对分布是多类分布中不确定性的自然表示。 在两类情况下,绝对分布会减少至Bernoulli分布,灰度形态学提供了一系列有用的操作。在一般情况下,对不确定的多类分布进行形态学操作并非直截了当,因为绝对分布的图象并不是一个完整的线状。虽然色彩图像的形态学受到广泛关注,但色标或绝对分布图象却并非如此。在这项工作中,我们通过将典型形态学与概率学相结合,为绝对分布建立了一套形态学要求。我们随后界定了符合这些要求的操作者,对绝对分布进行受保护的操作,并展示了这些操作者在两个示例任务上的效用:模拟脑肿瘤分布偏差和从多级U-Net预测中分解微粒的例子。