Out-of-distribution generalization is a core challenge in machine learning. We introduce and propose a solution to a new type of out-of-distribution evaluation, which we call close category generalization. This task specifies how a classifier should extrapolate to unseen classes by considering a bi-criteria objective: (i) on in-distribution examples, output the correct label, and (ii) on out-of-distribution examples, output the label of the nearest neighbor in the training set. In addition to formalizing this problem, we present a new training algorithm to improve the close category generalization of neural networks. We compare to many baselines, including robust algorithms and out-of-distribution detection methods, and we show that our method has better or comparable close category generalization. Then, we investigate a related representation learning task, and we find that performing well on close category generalization correlates with learning a good representation of an unseen class and with finding a good initialization for few-shot learning. The code is available at https://github.com/yangarbiter/close-category-generalization
翻译:在机器学习中,传播的普及是一个核心挑战。我们引入并提出了一种新类型的分配外评价的解决方案,我们称之为“近类一般化”。这一任务具体说明了分类员如何通过考虑一个双重标准目标向看不见的类别外推:(一) 分配中的例子,输出正确的标签,和(二) 分配之外的例子,输出培训成套材料中最近的邻居的标签。除了将这一问题正规化外,我们还提出了一种新的培训算法,以改进神经网络的近类一般化。我们比较了许多基线,包括稳健的算法和分配以外的检测方法,并表明我们的方法有更好或可比的近类一般化。然后,我们调查相关的代表性学习任务,发现在接近类内进行良好的一般化的工作与学习一个隐性班的良好代表性有关,并为少数的学习找到良好的初始化。代码见https://github.com/yangarbiter/cloust-分类一般化。该代码见https://github.