A linear code over $\mathbb{F}_q$ with the Hamming metric is called $\Delta$-divisible if the weights of all codewords are divisible by $\Delta$. They have been introduced by Harold Ward a few decades ago. Applications include subspace codes, partial spreads, vector space partitions, and distance optimal codes. The determination of the possible lengths of projective divisible codes is an interesting and comprehensive challenge.
翻译:$\ mathbb{F\\\ qq$ 的线性代码与 Hamming 公标的代码称为 $\ Delta$- divisible, 如果所有代码的重量可以被 $\ Delta$ 拆分的话, 则称为$\ Delta$- dq$ 。 几十年前Harold Ward 引入了这些代码。 应用程序包括子空间代码、 部分扩展、 矢量空间分割和距离最佳代码。 确定投影可互换代码的可能长度是一个有趣和全面的挑战 。