The importance of building semantic parsers which can be applied to new domains and generate programs unseen at training has long been acknowledged, and datasets testing out-of-domain performance are becoming increasingly available. However, little or no attention has been devoted to learning algorithms or objectives which promote domain generalization, with virtually all existing approaches relying on standard supervised learning. In this work, we use a meta-learning framework which targets zero-shot domain generalization for semantic parsing. We apply a model-agnostic training algorithm that simulates zero-shot parsing by constructing virtual train and test sets from disjoint domains. The learning objective capitalizes on the intuition that gradient steps that improve source-domain performance should also improve target-domain performance, thus encouraging a parser to generalize to unseen target domains. Experimental results on the (English) Spider and Chinese Spider datasets show that the meta-learning objective significantly boosts the performance of a baseline parser.
翻译:建立可用于新领域和生成培训中看不见的程式的语义分析器的重要性早已得到确认,而且测试外部功能的数据集也越来越容易获得。然而,几乎没有或根本没有关注能够促进广域化的学习算法或目标,几乎所有现有方法都依赖于标准监督学习。在这项工作中,我们使用一个元学习框架,针对语义分析的零光域概括。我们应用了一个模型-不可知性培训算法,通过从脱节域构建虚拟列车和测试组来模拟零点分解。学习目标利用了一种直觉,即改进源域性功能的梯度步骤也应改善目标域性功能,从而鼓励一个分析器将普通化到看不见的目标领域。(英语)蜘蛛和中国蜘蛛数据集的实验结果显示,元学习目标通过构建虚拟列车和从脱节域测试组模拟零分解。学习目标利用了一种直觉,即提高源域性功能的梯度步骤也应改善目标域性功能,从而鼓励一个分析器将普通到看不见的目标域。(英语)蜘蛛和中国蜘蛛数据集的实验结果显示,元学习目标将大大提升基线派的性能。