There exist several methods for computing exact solutions of algebraic differential equations. Most of the methods, however, do not ensure existence and uniqueness of the solutions and might fail after several steps, or are restricted to linear equations. The authors have presented in previous works a method to overcome this problem for autonomous first order algebraic ordinary differential equations and formal Puiseux series solutions and algebraic solutions. In the first case, all solutions can uniquely be represented by a sufficiently large truncation and in the latter case by its minimal polynomial. The main contribution of this paper is the implementation, in a MAPLE-package named FirstOrderSolve, of the algorithmic ideas presented therein. More precisely, all formal Puiseux series and algebraic solutions, including the generic and singular solutions, are computed and described uniquely. The computation strategy is to reduce the given differential equation to a simpler one by using local parametrizations and the already known degree bounds.


翻译:计算代数差异方程式的精确解决办法有几种方法,但大多数方法不能确保解决办法的存在和独特性,而且可能在若干步骤后失败,或限于线性方程式。作者在以前的工作中提出的一种方法,是解决以下问题的方法:一阶自主的代数普通差异方程式和正式的Puiseux系列解决办法和代数法解决办法。在第一种情况下,所有解决办法都可以由足够大的截肢代表,而在后一种情况下,则由最小的多元数值代表。本文的主要贡献是在一个称为PAMALE-Package Afirst OrderSolve的算法组合中实施其中的算法概念。更确切地说,所有正式的Puseux系列和代数解决方案,包括通用和单一的解决方案,都是经过单独计算和描述的。计算策略是使用本地的准位和已知的度界限将给定的差方程式减少到更简单的方程式。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
【机器学习术语宝典】机器学习中英文术语表
专知会员服务
60+阅读 · 2020年7月12日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
194+阅读 · 2019年10月10日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
0+阅读 · 2021年4月29日
Arxiv
0+阅读 · 2021年4月28日
Arxiv
0+阅读 · 2021年4月27日
VIP会员
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
CCF C类 | DSAA 2019 诚邀稿件
Call4Papers
6+阅读 · 2019年5月13日
人工智能 | ISAIR 2019诚邀稿件(推荐SCI期刊)
Call4Papers
6+阅读 · 2019年4月1日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员