We develop an energy-based finite difference method for the wave equation in second order form. The spatial discretization satisfies a summation-by-parts (SBP) property. With boundary conditions and material interface conditions imposed weakly by the simultaneous-approximation-term (SAT) method, we derive energy estimates for the semi-discretization. In addition, error estimates are derived by the normal mode analysis. The energy-based discretization does not use any mesh-dependent parameter, even in the presence of Dirichlet boundary conditions and material interfaces. Furthermore, similar to upwind discontinuous Galerkin methods, numerical dissipation can be added to the discretization through the boundary conditions. We present numerical experiments that verify convergence and robustness of the proposed method.
翻译:我们以第二顺序的形式为波形方程式开发了一种基于能源的有限差异法。空间离散满足了按部和部分列的属性。由于边界条件和材料界面条件由同时接近期法(SAT)不力地施加,我们得出半分解的能源估计数。此外,误差估计数由正常模式分析得出。即使存在dirichlet边界条件和材料界面,基于能源的离散不使用任何网状依赖参数。此外,与上风不连续的Galerkin方法类似,数字分散可以通过边界条件增加离散。我们提出数字实验,以核实拟议方法的趋同性和稳健性。