Fourier neural operators (FNOs) can learn highly nonlinear mappings between function spaces, and have recently become a popular tool for learning responses of complex physical systems. However, to achieve good accuracy and efficiency, FNOs rely on the Fast Fourier transform (FFT), which is restricted to modeling problems on rectangular domains. To lift such a restriction and permit FFT on irregular geometries as well as topology changes, we introduce domain agnostic Fourier neural operator (DAFNO), a novel neural operator architecture for learning surrogates with irregular geometries and evolving domains. The key idea is to incorporate a smoothed characteristic function in the integral layer architecture of FNOs, and leverage FFT to achieve rapid computations, in such a way that the geometric information is explicitly encoded in the architecture. In our empirical evaluation, DAFNO has achieved state-of-the-art accuracy as compared to baseline neural operator models on two benchmark datasets of material modeling and airfoil simulation. To further demonstrate the capability and generalizability of DAFNO in handling complex domains with topology changes, we consider a brittle material fracture evolution problem. With only one training crack simulation sample, DAFNO has achieved generalizability to unseen loading scenarios and substantially different crack patterns from the trained scenario.


翻译:傅里叶神经算子(FNO)能够学习函数空间之间高度非线性的映射关系,最近已成为学习复杂物理系统响应的流行工具。然而,为了实现较高的准确性和效率,FNO依赖于快速傅里叶变换(FFT),而该变换仅限于在规则区域内建模问题。为了解除这样的限制,允许在不规则几何和拓扑变化的情况下进行FFT,我们引入了领域无关傅里叶神经算子(DAFNO),这是一种用于学习不规则几何和不断变化的区域中代理的新型神经算子架构。关键想法是在FNO的积分层结构中加入平滑的特征函数,并利用FFT实现快速计算,以便将几何信息明确编码到架构中。在我们的实证评估中,DAFNO相比基线神经算子模型,在物质建模和翼型模拟这两个基准数据集上均取得了最先进的精度。为了进一步展示DAFNO处理具有拓扑变化的复杂区域的能力和通用性,我们考虑了脆性材料断裂演化问题。仅使用一个训练裂纹模拟样本,DAFNO已经实现了对训练场景之外的载荷情况和截然不同的裂纹模式的泛化能力。

0
下载
关闭预览

相关内容

神经网络的拓扑结构,TOPOLOGY OF DEEP NEURAL NETWORKS
专知会员服务
32+阅读 · 2020年4月15日
专知会员服务
60+阅读 · 2020年3月19日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Learning in the Frequency Domain
Arxiv
11+阅读 · 2020年3月12日
Generative Adversarial Networks: A Survey and Taxonomy
VIP会员
相关资讯
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
资源|斯坦福课程:深度学习理论!
全球人工智能
17+阅读 · 2017年11月9日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
Top
微信扫码咨询专知VIP会员