While recent deep deblurring algorithms have achieved remarkable progress, most existing methods focus on the global deblurring problem, where the image blur mostly arises from severe camera shake. We argue that the local blur, which is mostly derived from moving objects with a relatively static background, is prevalent but remains under-explored. In this paper, we first lay the data foundation for local deblurring by constructing, for the first time, a LOcal-DEblur (LODE) dataset consisting of 3,700 real-world captured locally blurred images and their corresponding ground-truth. Then, we propose a novel framework, termed BLur-Aware DEblurring network (BladeNet), which contains three components: the Local Blur Synthesis module generates locally blurred training pairs, the Local Blur Perception module automatically captures the locally blurred region and the Blur-guided Spatial Attention module guides the deblurring network with spatial attention. This framework is flexible such that it can be combined with many existing SotA algorithms. We carry out extensive experiments on REDS and LODE datasets showing that BladeNet improves PSNR by 2.5dB over SotAs for local deblurring while keeping comparable performance for global deblurring. We will publish the dataset and codes.
翻译:虽然最近的深度模糊算法取得了显著进展,但大多数现有方法侧重于全球模糊问题,即图像模糊大多来自严重的照相机摇动。我们争辩说,本地模糊大多来自相对静止背景的移动对象,很普遍,但仍然未得到充分探索。在本文中,我们首先通过首次建造由3 700个当地摄取的模糊图像及其相应的地面图解,为本地模糊的数据集奠定了数据基础。然后,我们提出了一个新颖的框架,称为BLur-Aware Deburrring网络(BladeNet),其中包括三个组成部分:本地布卢综合模块产生本地模糊的培训配对,本地布卢尔 Perception模块自动捕捉到本地模糊的区域,而布卢尔引导的空间关注模块则以空间关注的方式指导脱乱网络。这个框架十分灵活,可以与许多现有的SotA算法相结合。我们对REDS和LODED数据设置进行了广泛的实验,其中含有三个组成部分:本地布卢综合模块生成本地模糊的培训配对培训配对,当地模糊的模块自动捕捉到本地模糊区域区域,而BLladebl 将维护全球数据码。