Network function virtualization (NFV) enhances service flexibility by decoupling network functions from dedicated hardware. To handle time-varying traffic in NFV network, virtualized network function (VNF) migration has been involved to dynamically adjust resource allocation. However, as network functions diversify, different resource types may be underutilized due to bottlenecks, which can be described as multidimensional resource fragmentation. To address this issue, we firstly define a metric to quantify resource fragmentation in NFV networks. Then, we propose a multi-hop graph attention network (MHGAT) model to effectively extract resource features from tailored network layers, which captures the overall network state and produces high-quality strategies rapidly. Building on this, we develop an MHGAT method to implement fast defragmentation and optimize VNF migration. Simulations demonstrate that by fast defragmentation, the MHGAT method improves the acceptance ratio by an average of 12.8%, reduces the overload ratio by an average of 30.6%, and lowers migration loss by an average of 43.3% compared to the state-of-art benchmark.
翻译:暂无翻译